organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(2,3-Dihvdro-1,4-benzodioxin-2-vl)methanol

Mónica Díaz Gavilán,^a Duane Choquesillo-Lazarte^b and Joaquín M. Campos^a*

^aDepartamento de Química Farmacéutica y Orgánica, Facultad de Farmacia, Universidad de Granada, c/ Campus de Cartuia s/n, 18071 Granada, Spain, and ^bLaboratorio de Estudios Cristalográficos, IACT-CSIC, P. T. Ciencias de la Salud, Granada 18100, Spain

Correspondence e-mail: jmcampos@ugr.es

Received 29 March 2007; accepted 3 April 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.041; wR factor = 0.108; data-to-parameter ratio = 16.8.

In the title compound, $C_9H_{10}O_3$, the heterocyclic ring has a half-chair conformation. The -CH2OH substituent is attached equatorially with respect to the heterocyclic ring. In the crystal structure, the molecules are linked by O-H···O hydrogen bonds, with the hydroxyl O atom functioning both as donor and acceptor. This results in the formation of C(2) helical chains running along the fourfold screw axes.

Related literature

In closely related salt structures, there are chains running along a twofold screw axis built up by hydrogen-bond interactions, involving the ammonium groups NH_3^+ and the carboxylate O atoms (Marchini et al., 2005).

For related literature, see: Bernstein et al. (1995); Bolchi et al. (2003); Cremer & Pople (1975); Guillaumet (1996).

Experimental

Crystal data $C_9H_{10}O_3$ $M_r = 166.17$ Tetragonal, $I4_1/a$ a = 22.5161 (10) Åc = 6.3400 (6) Å V = 3214.2 (4) Å³

Z = 16 Mo $K\alpha$ radiation $\mu = 0.10 \text{ mm}^{-1}$ T = 100 (2) K0.55 \times 0.23 \times 0.15 mm

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2004) $T_{\min} = 0.955, T_{\max} = 0.985$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	H atoms treated by a mixture of
$wR(F^2) = 0.108$	independent and constrained
S = 1.03	refinement
1883 reflections	$\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^{-3}$
112 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$
1 restraint	

9739 measured reflections

 $R_{\rm int} = 0.024$

1883 independent reflections

1716 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$O3-H3\cdots O3^i$	0.840 (14)	1.801 (14)	2.6348 (11)	172.1 (17)	
Symmetry code: (i) $-y \pm \frac{5}{2} x - \frac{1}{2} z - \frac{1}{2}$					

S $+\frac{3}{4}, x$

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL: molecular graphics: PLATON (Spek. 2003): software used to prepare material for publication: publCIF (Westrip, 2007).

The authors thank the Junta de Andalucía (Excellence Research Project No. 00636) for financial support. DCL thanks CSIC-EU for an I3P postdoctoral research contract.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2014).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bolchi, C., Fumagalli, L., Moroni, B., Pallavicini, M. & Valoti, E. (2003). Tetrahedron Asymmetry, 14, 3779-3785.
- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Guillaumet, G. (1996). Comprehensive Heterocyclic Chemistry II, 1st ed., edited by A. R. Katritzky, C. W. Rees & E. F. V. Scriven, Vol. 6, p. 447. Oxford: Pergamon.
- Marchini, N., Bombieri, G., Artali, R., Bolchi, C., Pallavicini, M. & Valoti, E. (2005). Tetrahedron Asymmetry, 16, 2099-2106.
- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Westrip, S. P. (2007). publCIF. In preparation.

supplementary materials

Acta Cryst. (2007). E63, o2940 [doi:10.1107/S1600536807016625]

(2,3-Dihydro-1,4-benzodioxin-2-yl)methanol

M. Díaz Gavilán, D. Choquesillo-Lazarte and J. M. Campos

Comment

The 2,3-dihydro-1,4-benzodioxin ring system is present in a large number of structures of therapeutic agents possessing important biological activities (Guillaumet, 1996). As part of our ongoing investigation of this kind of system, we recently prepared the title compound, (I), and present here its crystal structure.

The structure of (I) is shown in Fig. 1. The six-membered ring containing O atoms adopts a half-chair conformation. The Cremer & Pople (1975) puckering parameters for this ring are Q = 0.5095 (11), $\theta = 51.72$ (13)° and $\varphi = 151.75$ (14)°. The methanol group attached to C7 is in an equatorial position.

In the crystal structure, molecules form helical chains along c, involving their hydroxyl groups both as donors and acceptors of hydrogen bonds (Table 2), with graph set C(2) (Bernstein *et al.*, 1995), *via* crystallographic fourfold screw axes (Fig. 2).

Experimental

The title compound was obtained as follows. Catechol (1.0 equivalent) was added at room temperature to a solution of K₂CO₃ (2.5 equivalents) in distilled water and the resulting solution was stirred for 30 min. Epichlorohydrin (1.3 equivalents) was then added dropwise and warmed at 343 K for 6 h. After cooling to room temperature, the reaction mixture was diluted and extracted (CH₂Cl₂), the organic layer dried (Na₂SO₄), filtered and concentrated, and the crude product purified by flash chromatography (gradient elution EtOAc–hexane 1:5 \rightarrow 1:1.5). The title compound was obtained (46% yield) as a white solid [m.p. 360–361 K (literature value 362.35 K; Bolchi *et al.*, 2003)]. Suitable crystals of (I) were obtained after dissolving the compound in the minimum volume of CH₂Cl₂. A vial with a screw top allowed the slow evaporation of the solvent at room temperature to produce colourless crystals.

Refinement

The hydroxy H atom was located in a difference map and refined as riding, with O—H = 0.84 Å and with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were positioned geometrically and treated as riding, with C—H = 0.95–0.99 Å and with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are represented as spheres of arbitrary radii.

Fig. 2. A view, down the c axis, of the molecular packing of (I). The intermolecular hydrogen bonds are shown as dashed lines.

(2,3-Dihydro-1,4-benzodioxin-2-yl)methanol

Crystal data	
C9H10O3	Z = 16
$M_r = 166.17$	$F_{000} = 1408$
Tetragonal, $I4_1/a$	$D_{\rm x} = 1.374 {\rm ~Mg~m}^{-3}$
Hall symbol: -I 4ad	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 22.5161 (10) Å	Cell parameters from 4441 reflections
b = 22.5161 (10) Å	$\theta = 1.8 - 28.3^{\circ}$
c = 6.3400 (6) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\alpha = 90^{\circ}$	T = 100 (2) K
$\beta = 90^{\circ}$	Prism, colourless
$\gamma = 90^{\circ}$	$0.55 \times 0.23 \times 0.15 \text{ mm}$
$V = 3214.2 (4) \text{ Å}^3$	

Data collection

Bruker SMART APEX CCD area-detector diffractometer	1716 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.024$
T = 100(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 2004)	$h = -25 \rightarrow 29$
$T_{\min} = 0.955, T_{\max} = 0.985$	$k = -18 \rightarrow 29$
9739 measured reflections	$l = -8 \rightarrow 7$
1883 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	$w = 1/[\sigma^2(F_o^2) + (0.0545P)^2 + 3.1875P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.108$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.03	$\Delta \rho_{max} = 0.35 \text{ e } \text{\AA}^{-3}$
1883 reflections	$\Delta \rho_{min} = -0.21 \text{ e } \text{\AA}^{-3}$
112 parameters	Extinction correction: none
1 restraint	
Primary atom site location: structure-invariant direct methods	

Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.79405 (5)	0.30835 (5)	0.4847 (2)	0.0185 (3)
C2	0.82759 (6)	0.27676 (6)	0.6307 (2)	0.0235 (3)
H2	0.8132	0.2715	0.7703	0.028*
C3	0.88200 (6)	0.25297 (6)	0.5731 (2)	0.0258 (3)
H3A	0.9047	0.2312	0.6728	0.031*
C4	0.90330 (6)	0.26102 (6)	0.3693 (2)	0.0258 (3)
H4	0.9410	0.2454	0.3308	0.031*
C5	0.86967 (6)	0.29177 (6)	0.2219 (2)	0.0226 (3)
Н5	0.8844	0.2971	0.0827	0.027*
C6	0.81441 (5)	0.31479 (5)	0.2776 (2)	0.0177 (3)
01	0.78152 (4)	0.34302 (4)	0.12524 (14)	0.0197 (2)
C7	0.71960 (5)	0.34921 (5)	0.1827 (2)	0.0194 (3)
H7	0.7008	0.3090	0.1812	0.023*
C8	0.71610 (6)	0.37380 (6)	0.4038 (2)	0.0233 (3)
H8A	0.7386	0.4115	0.4125	0.028*
H8B	0.6742	0.3821	0.4408	0.028*
O2	0.74068 (4)	0.33105 (4)	0.54951 (14)	0.0236 (2)
C9	0.68964 (6)	0.38742 (6)	0.0181 (2)	0.0214 (3)
H9A	0.6953	0.3689	-0.1221	0.026*
H9B	0.6465	0.3885	0.0473	0.026*
O3	0.71146 (4)	0.44630 (4)	0.01122 (16)	0.0256 (2)
Н3	0.7420 (7)	0.4480 (8)	-0.065 (3)	0.031*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0192 (6)	0.0155 (5)	0.0208 (6)	-0.0012 (4)	-0.0018 (5)	-0.0021 (4)
C2	0.0280 (7)	0.0212 (6)	0.0213 (6)	-0.0025 (5)	-0.0053 (5)	-0.0003 (5)
C3	0.0253 (6)	0.0196 (6)	0.0325 (7)	0.0001 (5)	-0.0132 (5)	-0.0012 (5)
C4	0.0162 (6)	0.0227 (6)	0.0385 (8)	0.0011 (5)	-0.0045 (5)	-0.0059 (5)
C5	0.0186 (6)	0.0224 (6)	0.0268 (7)	-0.0018 (5)	0.0008 (5)	-0.0026 (5)
C6	0.0178 (6)	0.0145 (5)	0.0209 (6)	-0.0021 (4)	-0.0019 (4)	-0.0011 (4)
01	0.0177 (4)	0.0227 (4)	0.0186 (4)	0.0020 (3)	0.0017 (3)	0.0023 (3)
C7	0.0169 (6)	0.0201 (6)	0.0211 (6)	0.0007 (4)	0.0018 (5)	0.0000 (5)
C8	0.0245 (6)	0.0255 (6)	0.0198 (6)	0.0068 (5)	0.0011 (5)	0.0004 (5)
O2	0.0244 (5)	0.0286 (5)	0.0177 (5)	0.0070 (4)	0.0026 (4)	0.0025 (4)
C9	0.0215 (6)	0.0229 (6)	0.0198 (6)	0.0018 (5)	-0.0003 (5)	0.0008 (5)
O3	0.0272 (5)	0.0195 (5)	0.0299 (5)	0.0040 (4)	0.0082 (4)	0.0016 (4)
Geometric paran	neters (Å. °)					
C1 02		1 2680 (15)	01 07	,	1.4	477(14)
C1 = 02		1.3009 (13)	C7 C8		1.44 / / (14)	
C1 - C2		1.3900(17) 1 3981(18)	C7—C8		1.3091 (18)	
$C_{1} = C_{0}$		1 3861 (19)	С7—Н7	,	1.0000	
С2—Н2		0.9500	C8-02	,	1.0000	
C_2 — C_4		1.390(2)	C8-02	Δ	0.9900	
С3—НЗА		0.9500	C8—H8B		0.9900	
C4—C5		1 3878 (19)	C_{0}		1.4146 (15)	
C4—H4		0.9500	C9—H9A		0.9900	
C5—C6		1 3934 (17)	C9—H9B		0.9	900
С5—Н5		0.9500	03—H3		0.840 (14)	
C6—O1		1.3732 (15)				
$0^{2}-C^{1}-C^{2}$		117 89 (11)	01-07	/C9	10	8 11 (10)
02-01-02		122.08 (11)	$C_{1} = C_{2} = C_{3}$		108.11(10) 114(17(10))	
$C_2 = C_1 = C_0$		122.00(11) 120.01(11)	01-07	су —H7	108.6	
$C_2 = C_1 = C_0$		120.01(11) 120.15(13)	C8-C7-H7		108.6	
C3—C2—H2		119.9	C9—C7	—H7	108.6	
C1—C2—H2		119.9	$0^{2}-0^{8}-0^{7}$		109.24 (10)	
C2—C3—C4		119.97 (12)	02—C8	H8A	109.8	
С2—С3—НЗА		120.0	C7—C8—H8A		109.8	
С4—С3—НЗА		120.0	02—C8—H8B		109.8	
C5—C4—C3		120.18 (12)	C7—C8—H8B		109.8	
С5—С4—Н4		119.9	H8A—C8—H8B		108.3	
С3—С4—Н4		119.9	C1		113.15 (10)	
C4—C5—C6		120.14 (13)	O3—C9	—С7	113.55 (11)	
C4—C5—H5		119.9	O3—C9	—Н9А	10	8.8
С6—С5—Н5		119.9	С7—С9	—H9A	10	8.9
O1—C6—C5		118.39 (11)	O3—C9	—Н9В	103	8.9
O1—C6—C1		122.12 (11)	С7—С9	—Н9В	103	8.9

supplementary materials

C5-C6-C1 C6-O1-C7 O1-C7-C8	119.49 (11) 112.76 (9) 108.63 (10)		Н9А—С9—Н9В С9—О3—Н3		107.7 110.1 (12)
Hydrogen-bond geometry (Å, °)					
D—H···A		<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
O3—H3…O3 ⁱ		0.840 (14)	1.801 (14)	2.6348 (11)	172.1 (17)
Symmetry codes: (i) $-y+5/4$, $x-1/4$, z	-1/4.				

